The Extended Freudenthal Magic Square and Jordan Algebras
نویسندگان
چکیده
The Lie superalgebras in the extended Freudenthal Magic Square in characteristic 3 are shown to be related to some known simple Lie superalgebras, specific to this characteristic, constructed in terms of orthogonal and symplectic triple systems, which are defined in terms of central simple degree three Jordan algebras.
منابع مشابه
Magic Squares and Matrix Models of Lie Algebras
This paper is concerned with the description of exceptional simple Lie algebras as octonionic analogues of the classical matrix Lie algebras. We review the Tits-Freudenthal construction of the magic square, which includes the exceptional Lie algebras as the octonionic case of a construction in terms of a Jordan algebra of hermitian 3× 3 matrices (Tits) or various plane and other geometries (Fre...
متن کامل0 v 1 1 J un 2 00 5 Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups
We study the symmetries of generalized spacetimes and corresponding phase spaces defined by Jordan algebras of degree three. The generic Jordan family of formally real Jordan algebras of degree three describe extensions of the Minkowskian spacetimes by an extra ”dilatonic” coordinate, whose rotation, Lorentz and conformal groups are SO(d−1), SO(d−1, 1)×SO(1, 1) and SO(d, 2)×SO(2, 1), respective...
متن کامل“Cayley-Klein” schemes for real Lie algebras and Freudhental Magic Squares
We introduce three “Cayley-Klein” families of Lie algebras through realizations in terms of either real, complex or quaternionic matrices. Each family includes simple as well as some limiting quasi-simple real Lie algebras. Their relationships naturally lead to an infinite family of 3×3 Freudenthal-like magic squares, which relate algebras in the three CK families. In the lowest dimensional cas...
متن کاملRepresentation Theory and Projective Geometry
This article consists of three parts that are largely independent of one another. The first part deals with the projective geometry of homogeneous varieties, in particular their secant and tangential varieties. It culminates with an elementary construction of the compact Hermitian symmetric spaces and the closed orbits in the projectivization of the adjoint representation of a simple Lie algebr...
متن کامل/ 05 06 01 0 v 3 2 6 A ug 2 00 5 Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups
We study the symmetries of generalized spacetimes and corresponding phase spaces defined by Jordan algebras of degree three. The generic Jordan family of formally real Jordan algebras of degree three describe extensions of the Minkowskian spacetimes by an extra “dilatonic” coordinate, whose rotation, Lorentz and conformal groups are SO(d−1), SO(d−1, 1)×SO(1, 1) and SO(d, 2)×SO(2, 1), respective...
متن کامل